Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clim Change ; 167(44)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34566207

RESUMO

Changes in temperature, precipitation, sea level, and coastal storms will likely increase the vulnerability of infrastructure across the USA. Using models that analyze vulnerability, impacts, and adaptation, this paper estimates impacts to railroad, roads, and coastal properties under three infrastructure management response scenarios: No Adaptation; Reactive Adaptation, and Proactive Adaptation. Comparing damages under each of these potential responses provides strong support for facilitating effective adaptation in these three sectors. Under a high greenhouse gas emissions scenario and without adaptation, overall costs are projected to range in the $100s of billions annually by the end of this century. The first (reactive) tier of adaptation action, however, reduces costs by a factor of 10, and the second (proactive) tier reduces total costs across all three sectors to the low $10s of billions annually. For the rail and road sectors, estimated costs for Reactive and Proactive Adaptation scenarios capture a broader share of potential impacts, including selected indirect costs to rail and road users, and so are consistently about a factor of 2 higher than prior estimates. The results highlight the importance of considering climate risks in infrastructure planning and management.

2.
J Infrastruct Syst ; 27(4)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36118678

RESUMO

High tide flooding (HTF) already affects traffic in many US coastal areas, but the issue will worsen significantly in the future. While studies show that large storm surge events threaten to be ever more costly, less damaging, but more frequent HTF events remain understudied and potentially carry a comparable economic impact. This study advances our understanding of the risks and impacts of HTF on vulnerable traffic corridors using hourly tide gauge water levels, sea-level rise projections, and link-level spatial analysis. It is the first study to estimate HTF economic impacts for varying levels of intervention, including reasonably anticipated driver-initiated rerouting and ancillary protection of adjacent property. The 2020 annual national-level costs of $1.3 to $1.5 billion will increase to $28 to $37 billion in 2050 and $220 to $260 billion in 2100 for medium to high greenhouse gas (GHG) emissions scenarios, respectively. Total costs over the century are $1.0 to $1.3 trillion (discounted 3%). Additional cost-effective protection by building sea walls or raising road surfaces could significantly reduce 2100 costs to $61 to $78 billion, but there remain many barriers to adopting least-cost adaptation decisions, and these gains may only be realized with careful planning and information sharing.

3.
Proc Natl Acad Sci U S A ; 114(2): E122-E131, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028223

RESUMO

Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80-100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...